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APPENDIX F.1

UNIVERSAL SOIL LOSS CALCULATIONS

Erosion at the proposed Transuranic (TRU) Waste Treatment Project site was modeled using the
Revised Universal Soil Loss Equation (RUSLE), Version 1.06 (Toy and Foster 1998). RUSLE is a set of
mathematical equations that estimate soil loss resulting from interrill and rill erosion (Lal 1994). RUSLE
utilizes the basic formula of the Universal Soil Loss Equation as developed by Wischmeier and Smith
(1978):

A = R * K * LS * C * P
where:

A = average annual soil loss in tons per acre,
R = rainfall/runoff erosivity,
K = soil erodibility,
LS = hillside length and steepness,
C = cover management,
P = soil conservation practices.

For the purposes of this analysis, the RUSLE was run assuming three scenarios. For each of the
three scenarios, the R, K, and LS factors values did not vary. The R factor (180) used the climatic
database for Knoxville, Tennessee. The initial K factor (0.37) was selected from soils mapped in
Anderson County, Tennessee (Moneymaker 1981), with similar lithology and parent material to soils
mapped at the TRU site. The RUSLE further modifies the initial K values based on variations in
climatic data (R factor) through the year. The LS value was calculated from RUSLE using a slope with
a total length of 91.5 m (300 ft) and a 30% slope.

The first scenario assumed a worst-case condition, in which virtually no cover management practices
were utilized to protect bare soils at the proposed construction site from the erosive energy of
precipitation. The second-case scenario was run under the assumption that minimal cover management
and conservation practices (some mulching to protect bare soil from precipitation) were utilized to
provide a small amount of erosion prevention. The third scenario assumed intensive conservation
practices (mulching, silt fences, and sediment basins) to provide maximum protection from erosion.

Results of the model runs for scenarios 1, 2, and 3 are displayed in Table 1 below. Based on
Scenario 1 (no cover management practices), predicted soil loss could be expected to be as high as
404.7 metric tons per hectare per year (180.5 tons per acre per year). The tolerable soil loss published for
similar soils is 6.7 metric tons per hectare per year (3 tons per acre per year) (Moneymaker 1981). Based
on Scenario 2 (minimal cover management practices), predicted soil loss would be somewhat less than for
Scenario 1, but could still as high as 188.8 metric tons per hectare per year (84.2 tons per acre per year).
The predicted soil loss is still much higher than the published tolerance value. In Scenario 3 (intensive
cover management practices), predicted soil loss would be further reduced to 2.2 metric tons per hectare
per year (1.0 ton per acre per year), well within the published tolerable limits.



TRU Waste Treatment Project, FINAL Environmental Impact Statement

F-4

Table 1. Predicted soil loss at proposed TRU waste facility under varying degrees
of cover management practices

Scenario R factor K factor LS factor C factor P factor A
1 180 0.359 12.53 0.2229 1.00 180.5
2 180 0.359 12.53 0.1040 1.00 84.2
3 180 0.359 12.53 0.0011 1.00 1.0
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Soil Conservation Service in cooperation with Tennessee Agricultural Experiment Station, 165 pp.
plus maps.

Toy, T. J., and G. R. Foster. Guidelines for the Use of the Revised Universal Soil Loss Equation (RUSLE)
(Version 1.06) on Mined Lands, Construction Sites, and Reclaimed Lands, Department of Interior,
Office of Surface Mining, Denver, Colorado.

Wischmeier, W. H., and D. D. Smith 1978. Predicting Rainfall Erosion Losses – a Guide to Conservation
Planning, U.S. Department of Agriculture, Agriculture handbook No. 537, 58 pp.



TRU Waste Treatment Project, FINAL Environmental Impact Statement

APPENDIX F.2

ECOLOGICAL IMPACTS FROM A SEISMICALLY INDUCED
BREACH OF THE MELTON VALLEY STORAGE TANKS



TRU Waste Treatment Project, FINAL Environmental Impact Statement

F.2-2

THIS PAGE INTENTIONALLY LEFT BLANK



TRU Waste Treatment Project, FINAL Environmental Impact Statement

F.2-3

APPENDIX F.2

IMPACTS TO AQUATIC BIOTA FROM A SEISMICALLY INDUCED
BREACH OF THE MELTON VALLEY STORAGE TANKS

ASSUMPTIONS

As a reasonable worst case, it was assumed that the release from the ruptured tank is rapid, so the
tank contents would rapidly be transported to Melton Branch. Therefore, undiluted concentrations of
radionuclides were used for the initial exposure and risk calculations. Releases of radionuclides were
evaluated for two tanks, Tank 26, which has the highest gross beta/gamma, and Tank 28, which has the
highest gross alpha (Keeler et al. 1996). It was assumed that White Oak Lake, with an area of 6 to
8 hectares (ha) (Loar 1992), has a volume of approximately 3 to 6 million cubic feet and an average daily
flow of 1.3 million cubic feet. The tank volume of 50,000 gal is equal to approximately 6,400 cubic feet,
resulting in a dilution factor of about 450 to 900 in White Oak Lake.

Radiological benchmarks for exposure of aquatic biota to radionuclides in water and sediment have
been developed by Bechtel Jacobs (1998) and were used to evaluate exposure of aquatic biota to
radionuclides in water from the Melton Valley tanks. Dietary and ingestion rate information for herons is
presented in Table 1. Radionuclide decay energies and absorption factors are presented in Table 2.

Table 1. Receptor Parameters for Great Blue Heron

Receptor: Great blue heron
(Ardea herodias)

Parameter Definition Value Reference/Notes
BW Body weight (kg) 2.39 Arithmetic mean, adult, both sexes, location

not stated  (EPA 1993)
HR Home range (km) 3.1 Foraging distance, mean, adults, both sexes,

South Dakota, stream (EPA 1993)
TUF Temporal use factor 1 Will be 1 unless a specific value exists for a

receptor
IRF Food ingestion rate (g/g-d = kg/kgBW/d)a 0.18 EPA (1993)

PF Plant fraction 0 None listed as dietary intake in EPA (1993)

AF Animal fraction 1 98% Aquatic vertebrates, lower Michigan,
river (EPA 1993)

SF Soil fraction 0 Not reported in EPA (1993); assumed to be
negligible

IRw Water ingestion rate (g/g-d = L/kgBW/d) 0.045 Estimated (EPA 1993)

aFood ingestion rate (g/g-d) reexpressed as kg/kgBW/d is assumed not to include ingested soil; therefore, PF+AF = 1.0.
EPA = U.S. Environmental Protection Agency.

The acceptable chronic dose of radiation to aquatic biota is 1 rad/d (NCRP 1991), and it is assumed
that an acute dose 100 times that number is also acceptable. For birds, the acceptable chronic dose is
0.1 rad/d (IAEA 1992), while acute doses of 10 rad/d appear unlikely to cause long-term deleterious
effects (IAEA 1992).
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Table 2. Radiological Exposure Parameters for Ecological Radiological
Constituents of Potential Concern

Ecological Decay energy and absorption parameters
constituent of potential

concern DCFa Eana
b Fc Ebnb

d Fe Egng
f Fe

Radionuclides
Cesium-134 9.50E-14 0.00E+00 1.00E+00 1.64E-01 1.00E+00 1.56E+00 4.10E-02
Cesium-137 1.29E-15 0.00E+00 1.00E+00 1.87E-01 1.00E+00 0.00E+00 1.00E+00
Cobalt-60 2.37E-11 0.00E+00 1.00E+00 9.70E-02 1.00E+00 2.50E+00 4.00E-02
Iodine-129 7.70E-14 0.00E+00 1.00E+00 6.40E-02 1.00E+00 2.50E-02 2.20E-01
Strontium-90 1.26E-15 0.00E+00 1.00E+00 1.96E-01 1.00E+00 0.00E+00 1.00E+00
Technetium-99 2.71E-16 0.00E+00 1.00E+00 1.01E-01 1.00E+00 0.00E+00 1.00E+00
Uranium-233 3.14E-15 4.82E+00 1.00E+00 1.30E-02 1.00E+00 2.00E-03 9.40E-01
Uranium-238 6.87E-16 4.19E+00 1.00E+00 1.00E-02 1.00E+00 1.00E-03 9.40E-01

aDose conversion factor for immersion in water (Table III.2, Eckerman and Ryman 1993, converted to Sv/d per Bq/m3).

bAlpha energy of the radionuclide (MeV) × proportion of disintegrations producing an a-particle (Table A.1, Eckerman
and Ryman 1993).

cAbsorbed fraction of energy Ea (assumed to be 1.0 for alpha radiations).

dBeta energy of the radionuclide (MeV) × proportion of disintegrations producing a b-particle (Table A.1, Eckerman
and Ryman 1993).

eAbsorbed fraction of energy Eb or Eg (Blaylock, Frank, and O’Neal 1993; DOE 1997).

fPhoton energy emitted during transition from a higher to a lower energy state (MeV) × proportion of disintegrations
producing a g-particle (Table A.1, Eckerman and Ryman 1993).

AQUATIC BIOTA

The concentrations of potassium, sodium, and nitrate are high. The combined concentrations of these
ions (ionic strengths) are 10.4 M (mole/L, where mole is defined as a number of grams equal to the
molecular weight of the constituent) in Tank 26 and 14.1 M in Tank 28.  Concentrations are similar in the
other tanks. The pH in Tanks 26 and 28 is 8.4 and 7.3, respectively, but the pH in Tank 31 is 10 and in the
other tanks is above 12.  These ionic strengths and the pH in all tanks other than Tanks 26 and 28 would
be immediately lethal to aquatic biota [the toxicity benchmark for sodium is ~0.03 M (Suter and Tsao
1996)]. Sufficient dilution and neutralization to prevent lethality are not likely before the slug of
contaminants reaches White Oak Lake. Therefore, an approximately 1-km (0.6-mile) stretch of Melton
Branch and White Oak Creek would be depopulated of aquatic biota. The slug of contaminants would
probably pass into White Oak Lake in a day or two. Recovery and repopulation of the creek stretches
would likely require up to one year as contaminants are flushed out by cleaner water from upstream.

External radiological exposures to water were estimated as described by Bechtel Jacobs (1998).
Concentrations of radionuclides in tank water were divided by benchmark values for exposure of aquatic
biota (or a benchmark for I-129 derived by the same methods). The hazard quotient (HQ) was calculated
for each radionuclide and summed to determine the hazard index (HI) for each tank. These calculations
are shown in Table 3. The HIs were approximately 8,900 for Tank 26 and 3,700 for Tank 28. However,
the benchmarks were derived for chronic exposure, and the calculated exposures were predominantly
internal, resulting from bioconcentration of radionuclides and ingestion of contaminated biota. Acute
external exposures to water alone in Melton Branch would be negligible (Table 3).
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Table 3. Radiological Exposure of Aquatic Biota to Radionuclides in Storage Tanks 26 and 28

Tank 26 Tank 28

Ecological
constituent of

potential concern

Bench-
mark
pCi/L

Tank
conc.

(Bq/mL)
RME

(pCi/L)

HQ
RME/
Bench-
mark

External
Dosea

(rad/d)

Tank
conc.

(Bq/mL)
RME

(pCi/L)

HQ
RME/

Benchmark

External
Dose

(rad/d)

Radionuclides
Cesium-134 5.98E+03 2.00E+04 7.40E+05 1.24E+02 5.64E-02 2.40E+03 8.88E+04 1.48E+01 6.77E-03
Cesium-137 5.93E+03 1.40E+06 5.18E+07 8.74E+03 0.00E+00 5.70E+05 2.11E+07 3.56E+03 0.00E+00
Cobalt-60 5.31E+03 2.20E+03 8.14E+04 1.53E+01 1.00E-02 3.70E+03 1.37E+05 2.58E+01 1.68E-02
Iodine-129 3.35E+05 7.80E-02 2.89E+00 8.62E-06 2.88E-09 1.90E-02 7.03E-01 2.10E-06 7.01E-10
Strontium-90 5.77E+04 2.50E+04 9.25E+05 1.60E+01 0.00E+00 1.50E+05 5.55E+06 9.62E+01 0.00E+00
Technetium-99 1.94E+06 1.90E+03 1.94E+06 1.00E+00 0.00E+00 4.10E+02 1.52E+04 7.82E-03 0.00E+00
Uranium-233 4.00E+03 3.80E+00 1.41E+02 3.52E-02 8.62E-10 6.08E+01 2.25E+03 5.62E-01 1.38E-08
Uranium-238 4.55E+03 1.00E-01 3.70E+00 8.13E-04 1.13E-11 1.80E+00 6.66E+01 1.46E-02 2.04E-10

Sum 8.89E+03 6.64E-02 3.69E+03 2.36E-02
aExternal dose = 5.11 × 10-8 × Eγnγ × (1-Φγ) × RME (Bechtel Jacobs 1998).
HQ = hazard quotient.
RME = reasonable maximum exposure.

Dilution of the contaminants in White Oak Lake would result (after complete mixing) in HIs of
approximately 10 to 20 for Tank 26 and 4 to 8 for Tank 28. Therefore, chronic radiation toxicity to
aquatic biota in White Oak Lake is likely. If the radionuclides were not retained by White Oak Dam and
the downstream containment system, they would rapidly be diluted in the Clinch River below levels of
concern for aquatic biota.

The time required to dilute contaminants in White Oak Lake can be estimated from the estimated
flow rate and volume of the lake, assuming rapid mixing and a constant flow rate. The rate of loss of total
mass of radionuclides (-dM/dt) is the product of the flow rate and the concentration at any given time
(FxC, where F is the flow rate and C is the concentration). C is defined as mass divided by volume, i.e.,
C = M/V (where V is the total volume of the lake).  Therefore, -dM/dt = FxM/V. This formula is
rearranged and integrated to find the mass (M) at any given time (t) relative to the starting mass (Mo):

ln(M/Mo) = -t x F/V ,

and

t = -ln(M/Mo)/(F/V) .

Because F is assumed to be 1.3 × 106 ft3/d and V is assumed to be 3 to 6 × 106 ft3, F/V ranges
between 0.2 and 0.4. To reduce the HI, which ranged from 8 to 20, to 1 requires a reduction of total mass
to 1/4 to 1/20 of the initial mass, i.e., M/Mo ranges from 0.05 to 0.25. Substituting into the second
equation above, the time t required to dilute the contaminants in White Oak Lake below the radiological
benchmark is from 3 to 15 days. If mixing with fresh water entering the lake is slow, parts of the lake will
require longer for concentrations to drop below benchmark levels.
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HERONS

Radiological doses to herons were estimated by using methods described by Sample et al. (1997).
Chronic and acute external radiation doses were assumed to result from standing in or near the
contaminated water for half of each day.  Chronic internal radiation doses were assumed to result from
ingestion of fish contaminated by uptake of radionuclides from contaminated water.  It was assumed that
acute internal doses would not occur because uptake of radionuclides to levels described by the
bioaccumulation factor (BCF) is a result of chronic exposure.

Results of exposure calculations are shown in Table 4 for Tank 26 and Table 5 for Tank 28.  The
calculations showed that external radiation would provide doses of 11 and 19 rad/d to herons standing for
half of the day in or at the edge of the water. These doses are above the nominal acute dose of 10 rad/d
that is assumed (IAEA 1992) not to cause adverse reproductive effects to birds. The likelihood that a
heron would spend half a day exposed to this spill is probably low, but sufficient exposure to cause some
harm seems to be possible.

The chronic benchmark for birds is 0.1 rad/d (IAEA 1992). Combined external and internal radiation
HIs were about 1,900 for Tank 26 and 3,850 for Tank 28. Dilution of the contaminants in White Oak
Lake would reduce radionuclide HIs to approximately 2 to 4 for Tank 26 and 4 to 8 for Tank 28.
Therefore, chronic radiation toxicity to herons and other fish-eating predators in White Oak Lake is
possible. If the radionuclides were not retained by White Oak Dam and the downstream containment
system, they would rapidly be diluted in the Clinch River below levels of concern for herons and other
fish-eating predators.

Using the equation developed for aquatic biota and a required reduction in mass of radionuclides of
1/2 to 1/8, the time required to bring HIs in White Oak Lake below 1 would be 2 to 10 days, or longer if
mixing with clean water entering the lake is not rapid.

SUMMARY AND CONCLUSIONS

If one of the Melton Valley TRU-waste storage tanks ruptures and releases 50,000 gal of liquid
radioactive waste into Melton Branch, aquatic biota would be killed by chemical toxicity, perhaps by high
pH, and possibly by acute external radiation exposure. Herons and other fish-eating biota could be
harmed by acute external radiation exposure if they remain in close proximity to the released water,
which seems unlikely since the rapidly flowing nature of the water would not provide suitable conditions
for a predator to fish.

The contaminants would likely move quickly downstream to White Oak Creek, where radiation
toxicity is also probable. Dilution of the non-radioactive contaminants in White Oak Lake would rapidly
reduce the concentrations of contaminants below levels causing chemical toxicity, and the pH would
probably change to non-toxic levels. However, chronic radiation doses to aquatic biota and fish-eating
predators in White Oak Lake would remain above benchmarks for acceptable chronic radiation levels for
a few days to a few weeks. The predominant exposures are to cesium-137 from Tank 26 or cesium-137,
cobalt-60, and strontium-90 from Tank 28.

Dilution of contaminants by release into the Clinch River would reduce radiation doses to aquatic
biota and fish-eating predators to acceptable levels.
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Table 4.  Radiological Exposure of Great Blue Herons to Radionuclides in Storage Tank 26

Ecological
constituent of

potential concern
Tank conc.

(Bq/mL)
RME

(pCi/L)
BCF

(L/kg) BAFv

ADDA
(pCi/gBW/d)
RME ×××× BCF
×××× IA /1,000

ADDW
(pCi/gBW/d)
RME ×××× IRW

/1,000

ADDtotal
(pCi/gBW/d)

ADDP +
ADDA +
ADDS

Internal
Dose

(rad/d)

External
Dose

(rad/d)

Total Dose
(rad/d)

Internal +
External

TRV
(rad/d)

Site HQ
ADD total /

TRV

Radionuclides
Cesium-134 2.00E+04 7.40E+05 2.00E+03 1.00E+00 2.66E+05 3.33E+01 2.66E+05 3.11E+00 4.16E-01 3.52E+00 1.00E-01 3.52E+01
Cesium-137 1.40E+06 5.18E+07 2.00E+03 1.00E+00 1.86E+07 2.33E+03 1.87E+07 1.79E+02 3.95E-01 1.79E+02 1.00E-01 1.79E+03
Cobalt-60 2.20E+03 8.14E+04 3.30E+02 1.00E+00 4.84E+03 3.66E+00 4.84E+03 4.88E-02 1.14E+01 1.15E+01 1.00E-01 1.15E+02
Iodine-129 7.80E-02 2.89E+00 5.00E+01 3.50E-01 2.60E-02 1.30E-04 2.61E-02 3.25E-08 1.32E-06 1.35E-06 1.00E-01 1.35E-05
Strontium-90 2.50E+04 9.25E+05 5.00E+01 1.50E-02 8.33E+03 4.16E+01 8.37E+03 1.26E-03 6.91E-03 8.17E-03 1.00E-01 8.17E-02
Technetium-99 1.90E+03 1.94E+06 1.50E+01 4.25E-01 5.24E+03 8.73E+01 5.33E+03 1.17E-02 3.12E-03 1.48E-02 1.00E-01 1.48E-01
Uranium-233 3.80E+00 1.41E+02 5.00E+01 1.00E-02 1.27E+00 6.33E-03 1.27E+00 6.27E-05 2.62E-06 6.54E-05 1.00E-01 6.54E-04
Uranium-238 1.00E-01 3.70E+00 5.00E+01 1.00E-02 3.33E-02 1.67E-04 3.35E-02 1.44E-06 1.50E-08 1.45E-06 1.00E-01 1.45E-05

HI = 1.94E+03
RME = Reasonable maximum exposure. Internal Dose (rad/d) = CF1 × ADDtotal × [(20 x Eana) + (Ebnb × Fb) + (Egng × Fg)].

BCF = Water-to-animal bioconcentration factor (Bechtel Jacobs 1998). External Dose (rad/d) = RME × Fabove × DCF × CF2 × 2.
BAFv = Food-to-predator bioaccumulation factor (Baes et al. 1984). CF = Conversion factor, 5.11× 10-8.

ADDA = Average daily ingestion rate of animal tissue. Fabove = Fraction of time spent at or in proximity to the water surface = 0.5.

1,000 = Conversion from kilogram to gram body weight. CFa = Conversion factor, 5.92 × 106.

IA (kg/kgBW/d) = Animal ingestion rate.
ADDW = Average daily ingestion rate; drinking water.

2 = Conversion factor for closer proximity of heron to external source than of humans, for whom
parameters were derived (Bechtel Jacobs 1998).

IRW (L/kgBW/d) = Water ingestion rate. TRV = Toxicity reference value.
ADDtotal = Average daily ingestion rate; total. HQ = Hazard quotient.

HI = Hazard index.
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Table 5. Radiological Exposure of Great Blue Herons to Radionuclides in Storage Tank 28

Ecological
constituent of

potential
concern

Tank
conc.

(Bq/mL)
RME

(pCi/L) BCF BAFv

ADDA
(pCi/gBW/d)
RME ×××× BCF
×××× IA /1,000

ADDW
(pCi/gBW/d)
RME ×××× IRW

/1,000

ADDtotal
(pCi/gBW/d)

ADDP +
ADDA +
ADDS

Internal
Dose

(rad/d)

External
Dose

(rad/d)

Total
Dose

(rad/d)
Internal +
External

TRV
(rad/d)

Site HQ
ADD total/

TRV
Radionuclides
Cesium-134 2.40E+03 8.88E+04 1.00E+04 1.00E+00 1.60E+05 4.00E+00 1.60E+05 1.86E+00 5.00E-02 1.91E+00 1.00E-01 1.91E+01
Cesium-137 5.70E+05 2.11E+07 1.00E+04 1.00E+00 3.80E+07 9.49E+02 3.80E+07 3.63E+02 1.61E-01 3.64E+02 1.00E-01 3.64E+03
Cobalt-60 3.70E+03 1.37E+05 1.50E+03 1.00E+00 3.70E+04 6.16E+00 3.70E+04 3.73E-01 1.92E+01 1.96E+01 1.00E-01 1.96E+02
Iodine-129 1.90E-02 7.03E-01 2.00E+02 3.50E-01 2.53E-02 3.16E-05 2.53E-02 3.16E-08 3.20E-07 3.52E-07 1.00E-01 3.52E-06
Strontium-90 1.50E+05 5.55E+06 3.00E+02 1.50E-02 3.00E+05 2.50E+02 3.00E+05 4.52E-02 4.14E-02 8.66E-02 1.00E-01 8.66E-01
Technetium-99 4.10E+02 1.52E+04 1.00E+02 4.25E-01 2.73E+02 6.83E-01 2.74E+02 6.02E-04 2.44E-05 6.26E-04 1.00E-01 6.26E-03
Uranium-233 6.08E+01 2.25E+03 5.00E+01 1.00E-02 2.02E+01 1.01E-01 2.03E+01 1.00E-03 4.19E-05 1.05E-03 1.00E-01 1.05E-02
Uranium-238 1.80E+00 6.66E+01 5.00E+01 1.00E-02 5.99E-01 3.00E-03 6.02E-01 2.58E-05 2.71E-07 2.61E-05 1.00E-01 2.61E-04

HI = 3.85E+03
RME = Reasonable maximum exposure. Internal Dose (rad/d) = CF1 × ADDtotal × [(20 × Eαnα) + (Eβnβ × Φβ) + (Eγnγ × Φγ)].
BCF = Water-to-animal bioconcentration factor (Bechtel Jacobs 1998). External Dose (rad/d) = RME x Fabove × DCF × CF2 × 2.
BAFv = Food-to-predator bioaccumulation factor (Baes et al. 1984). CF = Conversion factor, 5.11× 10-8.

ADDA = Average daily ingestion rate of animal tissue. Fabove = Fraction of time spent at or in proximity to the water surface = 0.5.

1,000 = Conversion from kilogram to gram body weight. CFa = Conversion factor, 5.92 × 106.

IA (kg/kgBW/d) = Animal ingestion rate.
ADDW = Average daily ingestion rate; drinking water.

2 = Conversion factor for closer proximity of heron to external source than of humans, for whom
parameters were derived (Bechtel Jacobs 1998).

IRW (L/kgBW/d) = Water ingestion rate. TRV = Toxicity reference value.
ADDtotal = Average daily ingestion rate; total. HQ = Hazard quotient.

HI = Hazard index.
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APPENDIX F.3

IMPACTS TO SOIL AND GROUNDWATER BY A SEISMICALLY
INDUCED BREACH OF THE MELTON VALLEY STORAGE TANKS

1. CONCENTRATION CONVERSIONS

Strontium-90 was considered a representative constituent of concern (COC) to evaluate under the
potential release scenario. Strontium-90 is a major COC and has significant environmental impact.
Furthermore, strontium-90 in Tank W28, one tank with more heavily impacted wastes, accounts for
approximately 15% of the total radioactive material (with respect to curies) in the tank. According to
Keeler et al. (1996), strontium-90 concentrations in Tank W28 are 1.5E5 Becquerel/mL.  Assuming the
analytical results reported in Keeler et al. (1996) are representative of the entire 50,000-gallon waste
volume, this can be converted via equations taken from the U.S. Department of Health, Education and
Welfare (1970):

1.5E5 B/mL × 2.7E-11 curies/1B × 1 g/141 curies
= 2.87E-8 g/mL × 1,000 mL/L
= 2.87E-5 g/L
= 2.87E-2 mg/L

2. ESTIMATE TOTAL MASS OF RELEASE

Total Mass = 2.87E-2 mg/L × 50,000 gallons released × 3.7859 L/gal
       = 5,432.7665 mg
       = 5.433 grams of strontium-90 or 766 curies

3. HOLDING CAPACITY OF THE SOIL

Assuming a reasonable worst-case scenario with respect to impact to the soil and groundwater, the
extent of contaminant loading to the soil can be estimated. This can be done by evaluating the
partitioning effect between the solute (waste) and the aquifer material. For such a calculation, it will be
assumed that flow from the release would move as porous media flow and at such a rate that the system
kinetics would allow the system to remain in chemical equilibrium (the conceptual model for the release
scenario along with the potential resulting area of impacted soils is detailed in Figure 1).

To evaluate the partitioning relationship, consider the aquifer or soil media’s distribution coefficient
(Kd):

Kd = concentration of the COC on the solid/concentration of the COC in solution.

For strontium-90, a value of 20 L/kg was used as suggested by Sheppard and Thibault (1990) for loam
soils.
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Can the estimated area of contaminated soil adsorb the estimated quantity of strontium-90 that
would be released?  What is the soil’s holding capacity?

As from the previous equation,

Concentration of the COC on the solid  = Kd × concentration of the COC in solution
Holding capacity = 20 L/kg × 2.87E-2 mg/L

  = 0.574 mg/kg (this is also the max. concentration to be expected in the soil)

if, as indicated on Figure 1, we could potentially have 866,250 ft3 of impacted soils, then:

kilograms of potentially impacted soil = 866,250 ft3 × 93.65 lb/ft3 × 0.45359 kg/lb
         = 3.68E7 kilograms (assuming a bulk density of 1.5 g/cm3)

Effective Holding Capacity of the soil
= maximum concentration of the COC on the solid × total mass of potentially impacted soil

= 0.574 mg/kg × 3.68E7 kg
= 2.11E7 mg
= 2.11E4 g
= 21.12 kg

Based on past release information from the Melton Valley Storage Tanks area, such a release would
greatly increase the level of localized impact.

4. FIRST-ORDER DECAY RATES FOR AN INDICATIVE CONSTITUENT OF CONCERN

As demonstrated previously, the rate of groundwater flushing from the impacted soil can be
determined from the Kd equation. However, such a calculation is greatly dependent upon contaminant
distribution, groundwater recharge, and flow rates. The concentration in the soil will also be directly
dependent upon the radio decay coefficient of the constituent of concern (29 years for strontium-90 as
referenced by Walton 1985).

The resulting concentration 100 years after release can be predicted by the following equation:

Resulting mass = original mass e-lt

Where: l = -0.6931/ 29
  = -0.0239

t = 100 years

Therefore, resulting mass = 5.433 g × e-2.92

    = 0.498 g (over a 90% reduction in total mass in 100 years).

Consequently, the radioactive decay process alone will greatly impact the strontium-90 mass and,
correspondingly, soil and groundwater concentration after 100 years.
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5. RESULTING CONCENTRATIONS IN SOIL AND GROUNDWATER

Based on the previously outlined assumptions, it is possible to calculate a reasonable maximum
concentration in both groundwater and soil as well as average concentrations if the strontium-90 is
evenly distributed across the suspected area of impact.

Soil: Groundwater:

Average  5.433 g/3.68E7 kg = soil conc. / Kd
= 1.476E-7 g/kg = 1.476E-4 mg/kg / 20 L/kg
= 1.476E-4 mg/kg = 7.38E-6 mg/L
= 1.476E-4 mg/kg × 141 Ci/g = 7.38E-9 g/L × 141 Ci/g
= 2.08E-5 Ci/kg = 1.04E-6 Ci/L
= 2.08E7 pCi/kg = 1.04E6 pCi/L

Maximum 0.574 mg/kg = soil conc. / Kd
= 5.74E-4 g/kg × 141 Ci/g = 0.574 mg/kg / 20 L/kg
= 8.09E-2 Ci/kg = 0.0287 mg/L
= 8.09E10 pCi/kg = 2.87E-5g/L × 141 Ci/g

= 4.05E-3 Ci/L
= 4.05E9 pCi/L

6. NARRATIVE AND CONCLUSIONS

In the event of the rupture and subsequent release of the contents of one of the eight Melton Valley
Storage Tanks, up to 50,000 gallons of liquid waste could be released to the environment. In this
appendix, the consequential impacts of such a release have been evaluated with respect to potential
impact to the soil and groundwater. To evaluate such a release scenario, it was assumed that waste would
leak from the vault in a band as wide as 150 ft across the lower front edge of the vault, in a zone parallel
to slope down to Melton Branch. Furthermore, it was assumed that the waste would initially leak through
the unsaturated overburden impacting an area of soil (150 ft × 75 ft × 13 ft) prior to reaching the
groundwater surface. Once the waste reaches the water table/groundwater surface, it is further assumed
that waste would mix with the shallow groundwater and ultimately discharge out to Melton Branch
approximately 400 ft away. Details of this conceptual model are depicted in Figure 1. Such a release
could potentially impact 5573.6 m2 (0.557 hectares) of area and 24,526 m3 of soil.

In order to assess the environmental impact, it was assumed that one of the more heavily impacted
tanks, W28, would breach and spill its entire contents (approximately 50,000 gallons). Strontium-90
concentrations in this tank were reported in Keeler et al. (1996) to be 1.5E5 Becquerel/mL. This
concentration in Tank W28 indicates that strontium-90 reflects approximately 15% of the total
radioactive material in that tank (as measured in Becquerels). Assuming the concentrations reported are
accurate for all the waste in Tank W28, 766 curies of strontium-90 would be released to the environment.
If that mass of strontium-90 were evenly distributed across the potentially impacted area, concentrations
in soil and groundwater would equate to 2.08E7 pCi/kg and 1.04E6 pCi/L, respectively. Based on
assumed soil/water partitioning interactions, the maximum values that could be expected in soil and
groundwater would equal 8.09E10 pCi/kg and 4.05E9 pCi/L, respectively. All calculations are detailed in
this appendix.
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These resulting concentrations are significant, as little to any previous impact for strontium-90 has
been reported for the soil and groundwater near the proposed transuranic (TRU) waste treatment facility
and South of Melton Branch. Furthermore, these concentrations reflect an apparent driver for
remediation when compared to the 10-6 residential risk scenario values of 0.014 pCi/kg and 0.85 pCi/L
for soil and water (RAIS 2000).
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